Перевод: с английского на все языки

со всех языков на английский

The Steam Engine of Thomas Newcomen

  • 1 Newcomen, Thomas

    [br]
    b. January or February 1663 Dartmouth, Devon, England
    d. 5 August 1729 London, England
    [br]
    English inventor and builder of the world's first successful stationary steam-engine.
    [br]
    Newcomen was probably born at a house on the quay at Dartmouth, Devon, England, the son of Elias Newcomen and Sarah Trenhale. Nothing is known of his education, and there is only dubious evidence of his apprenticeship to an ironmonger in Exeter. He returned to Dartmouth and established himself there as an "ironmonger". The term "ironmonger" at that time meant more than a dealer in ironmongery: a skilled craftsman working in iron, nearer to today's "blacksmith". In this venture he had a partner, John Calley or Caley, who was a plumber and glazier. Besides running his business in Dartmouth, it is evident that Newcomen spent a good deal of time travelling round the mines of Devon and Cornwall in search of business.
    Eighteenth-century writers and others found it impossible to believe that a provincial ironmonger could have invented the steam-engine, the concept of which had occupied the best scientific brains in Europe, and postulated a connection between Newcomen and Savery or Papin, but scholars in recent years have failed to find any evidence of this. Certainly Savery was in Dartmouth at the same time as Newcomen but there is nothing to indicate that they met, although it is possible. The most recent biographer of Thomas Newcomen is of the opinion that he was aware of Savery and his work, that the two men had met by 1705 and that, although Newcomen could have taken out his own patent, he could not have operated his own engines without infringing Savery's patent. In the event, they came to an agreement by which Newcomen was enabled to sell his engines under Savery's patent.
    The first recorded Newcomen engine is dated 1712, although this may have been preceded by a good number of test engines built at Dartmouth, possibly following a number of models. Over one hundred engines were built to Newcomen's design during his lifetime, with the first engine being installed at the Griff Colliery near Dudley Castle in Staffordshire.
    On the death of Thomas Savery, on 15 May 1715, a new company, the Proprietors of the Engine Patent, was formed to carry on the business. The Company was represented by Edward Elliot, "who attended the Sword Blade Coffee House in Birchin Lane, London, between 3 and 5 o'clock to receive enquiries and to act as a contact for the committee". Newcomen was, of course, a member of the Proprietors.
    A staunch Baptist, Newcomen married Hannah Waymouth, who bore him two sons and a daughter. He died, it is said of a fever, in London on 5 August 1729 and was buried at Bunhill Fields.
    [br]
    Further Reading
    L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, Hartington: Moorland Publishing Company (the definitive account of his life and work).
    IMcN

    Biographical history of technology > Newcomen, Thomas

  • 2 Savery, Thomas

    [br]
    b. c. 1650 probably Shilston, near Modbury, Devonshire, England
    d. c. 15 May 1715 London, England
    [br]
    English inventor of a partially successful steam-driven pump for raising water.
    [br]
    Little is known of the early years of Savery's life and no trace has been found that he served in the Army, so the title "Captain" is thought to refer to some mining appointment, probably in the West of England. He may have been involved in the Glorious Revolution of 1688, for later he was well known to William of Orange. From 1705 to 1714 he was Treasurer for Sick and Wounded Seamen, and in 1714 he was appointed Surveyor of the Water Works at Hampton Court, a post he held until his death the following year. He was interested in mechanical devices; amongst his early contrivances was a clock.
    He was the most prolific inventor of his day, applying for seven patents, including one in 1649, for polishing plate glass which may have been used. His idea for 1697 for propelling ships with paddle-wheels driven by a capstan was a failure, although regarded highly by the King, and was published in his first book, Navigation Improved (1698). He tried to patent a new type of floating mill in 1707, and an idea in 1710 for baking sea coal or other fuel in an oven to make it clean and pure.
    His most famous invention, however, was the one patented in 1698 "for raising water by the impellent force of fire" that Savery said would drain mines or low-lying land, raise water to supply towns or houses, and provide a source of water for turning mills through a water-wheel. Basically it consisted of a receiver which was first filled with steam and then cooled to create a vacuum by having water poured over the outside. The water to be pumped was drawn into the receiver from a lower sump, and then high-pressure steam was readmitted to force the water up a pipe to a higher level. It was demonstrated to the King and the Royal Society and achieved some success, for a few were installed in the London area and a manufactory set up at Salisbury Court in London. He published a book, The Miner's Friend, about his engine in 1702, but although he made considerable improvements, due to excessive fuel consumption and materials which could not withstand the steam pressures involved, no engines were installed in mines as Savery had hoped. His patent was extended in 1699 until 1733 so that it covered the atmospheric engine of Thomas Newcomen who was forced to join Savery and his other partners to construct this much more practical engine.
    [br]
    Principal Honours and Distinctions
    FRS 1706.
    Bibliography
    1698, Navigation Improved.
    1702, The Miner's Friend.
    Further Reading
    The entry in the Dictionary of National Biography (1897, Vol. L, London: Smith Elder \& Co.) has been partially superseded by more recent research. The Transactions of the Newcomen Society contain various papers; for example, Rhys Jenkins, 1922–3, "Savery, Newcomen and the early history of the steam engine", Vol. 3; A.Stowers, 1961–2, "Thomas Newcomen's first steam engine 250 years ago and the initial development of steam power", Vol. 34; A.Smith, 1977–8, "Steam and the city: the committee of proprietors of the invention for raising water by fire", 1715–1735, Vol. 49; and J.S.P.Buckland, 1977–8, "Thomas Savery, his steam engine workshop of 1702", Vol. 49. Brief accounts may be found in H.W. Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press, and R.L. Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press. There is another biography in T.I. Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black.
    RLH

    Biographical history of technology > Savery, Thomas

  • 3 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 4 Hornblower, Jonathan

    [br]
    b. 1753 Cornwall (?), England
    d. 1815 Penryn, Cornwall, England
    [br]
    English mining engineer who patented an early form of compound steam engine.
    [br]
    Jonathan came from a family with an engineering tradition: his grandfather Joseph had worked under Thomas Newcomen. Jonathan was the sixth child in a family of thirteen whose names all began with "J". In 1781 he was living at Penryn, Cornwall and described himself as a plumber, brazier and engineer. As early as 1776, when he wished to amuse himself by making a small st-eam engine, he wanted to make something new and wondered if the steam would perform more than one operation in an engine. This was the foundation for his compound engine. He worked on engines in Cornwall, and in 1778 was Engineer at the Ting Tang mine where he helped Boulton \& Watt erect one of their engines. He was granted a patent in 1781 and in that year tried a large-scale experiment by connecting together two engines at Wheal Maid. Very soon John Winwood, a partner in a firm of iron founders at Bristol, acquired a share in the patent, and in 1782 an engine was erected in a colliery at Radstock, Somerset. This was probably not very successful, but a second was erected in the same area. Hornblower claimed greater economy from his engines, but steam pressures at that time were not high enough to produce really efficient compound engines. Between 1790 and 1794 ten engines with his two-cylinder arrangement were erected in Cornwall, and this threatened Boulton \& Watt's near monopoly. At first the steam was condensed by a surface condenser in the bottom of the second, larger cylinder, but this did not prove very successful and later a water jet was used. Although Boulton \& Watt proceeded against the owners of these engines for infringement of their patent, they did not take Jonathan Hornblower to court. He tried a method of packing the piston rod by a steam gland in 1781 and his work as an engineer must have been quite successful, for he left a considerable fortune on his death.
    [br]
    Bibliography
    1781, British patent no. 1,298 (compound steam engine).
    Further Reading
    R.Jenkins, 1979–80, "Jonathan Hornblower and the compound engine", Transactions of the Newcomen Society 11.
    J.Tann, 1979–80, "Mr Hornblower and his crew, steam engine pirates in the late 18th century", Transactions of the Newcomen Society 51.
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (an almost contemporary account of the compound engine).
    D.S.L.Cardwell, 1971, From Watt to Clausius. The Rise of Thermo dynamics in the Early Industrial Age, London: Heinemann.
    H.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press.
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press.
    RLH

    Biographical history of technology > Hornblower, Jonathan

  • 5 Pickard, James

    [br]
    fl. c. 1780 Birmingham, England
    [br]
    English patentee of the application of the crank to steam engines.
    [br]
    James Pickard, the Birmingham button maker, also owned a flour mill at Snow Hill, in 1780, where Matthew Wasborough installed one of his rotative engines with ratchet gear and a flywheel. In August 1780, Pickard obtained a patent (no. 1263) for an application to make a rotative engine with a crank as well as gearwheels, one of which was weighted to help return the piston in the atmospheric cylinder during the dead stroke and overcome the dead centres of the crank. Wasborough's flywheel made the counterweight unnecessary, and engines were built with this and Pickard's crank. Several Birmingham business people seem to have been involved in the patent, and William Chapman of Newcastle upon Tyne was assigned the sole rights of erecting engines on the Wasborough-Pickard system in the counties of Northumberland, Durham and York. Wasborough was building engines in the south until his death the following year. The patentees tried to bargain with Boulton \& Watt to exchange the use of the crank for that of the separate condenser, but Boulton \& Watt would not agree, probably because James Watt claimed that one of his workers had stolen the idea of the crank and divulged it to Pickard. To avoid infringing Pickard's patent, Watt patented his sun-and-planet motion for his rotative engines.
    [br]
    Bibliography
    August 1780, British patent no. 1,263 (rotative engine with crank and gearwheels).
    Further Reading
    J.Farey, 1827, A Treatise on the Steam Engine, Historical, Practical and Descriptive, reprinted 1971, Newton Abbot: David \& Charles (contains an account of Pickard's crank). R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (provides an account of Pickard's crank).
    R.A.Buchanan, 1978–9, "Steam and the engineering community in the eighteenth century", Transactions of the Newcomen Society 50 ("Thomas Newcomen. A commemorative symposium") (provides details about the development of his engine).
    RLH

    Biographical history of technology > Pickard, James

  • 6 Papin, Denis

    [br]
    b. 22 August 1647 Blois, Loire et Cher, France
    d. 1712 London, England
    [br]
    French mathematician and physicist, inventor of the pressure-cooker.
    [br]
    Largely educated by his father, he worked for some time for Huygens at Ley den, then for a time in London where he assisted Robert Boyle with his experiments on the air pump. He supposedly invented the double-acting air pump. He travelled to Venice and worked there for a time, but was back in London in 1684 before taking up the position of Professor of Mathematics at the University of Marburg (in 1669 or 1670 he became a Doctor of Medicine at Angers), where he remained from 1687 to 1695. Then followed a period at Cassel, where he was employed by the Duke of Hesse. In this capacity he was much involved in the application of steam-power to pumping water for the Duke's garden fountains. Papin finally returned to London in 1707. He is best known for his "digester", none other than the domestic pressure-cooker. John Evelyn describes it in his diary (12 April 1682): "I went this Afternoone to a Supper, with severall of the R.Society, which was all dressed (both fish and flesh) in Monsieur Papins Digestorie; by which the hardest bones of Biefe itself, \& Mutton, were without water, or other liquor, \& with less than 8 ounces of Coales made as soft as Cheeze, produc'd an incredible quantity of Gravie…. This Philosophical Supper raised much mirth among us, \& exceedingly pleased all the Companie." The pressure-cooker depends on the increase in the boiling point of water with increase of pressure. To avoid the risk of the vessel exploding, Papin devised a weight-loaded lever-type safety valve.
    There are those who would claim that Papin preceded Newcomen as the true inventor of the steam engine. There is no doubt that as early as 1690 Papin had the idea of an atmospheric engine, in which a piston in a cylinder is forced upwards by expanding steam and then returned by the weight of the atmosphere upon the piston, but he lacked practical engineering skill such as was necessary to put theory into practice. The story is told of his last trip from Cassel, when returning to England. It is said that he built his own steamboat, intending to make the whole journey by this means, ending with a triumphal journey up the Thames. However, boatmen on the river Weser, thinking that the steamboat threatened their livelihood, attacked it and broke it up. Papin had to travel by more orthodox means. Papin is said to have co-operated with Thomas Savery in the development of the lat-ter's steam engine, on which he was working c. 1705.
    [br]
    Further Reading
    Charles-Armand Klein, 1987, Denis Papin: Illustre savant blaisois, Chambray, France: CLD.
    A.P.M.Fleming and H.R.S.Brocklehurst, 1925, A History of Engineering.
    Sigvar Strandh, 1979, Machines, Mitchell Beazley.
    IMcN

    Biographical history of technology > Papin, Denis

  • 7 Wasborough, Matthew

    [br]
    b. 1753 Bristol, England
    d. 21 October 1781 Bristol, England
    [br]
    English patentee of an application of the flywheel to create a rotative steam engine.
    [br]
    A single-cylinder atmospheric steam engine had a power stroke only when the piston descended the cylinder: a means had to be found of returning the piston to its starting position. For rotative engines, this was partially solved by the patent of Matthew Wasborough in 1779. His father was a partner in a Bristol brass-founding and clockmaking business in Narrow Wine Street where he was joined by his son. Wasborough proposed to use some form of ratchet gear to effect the rotary motion and added a flywheel, the first time one was used in a steam engine, "in order to render the motion more regular and uniform". He installed one engine to drive the lathes in the Bristol works and another at James Pickard's flour mill at Snow Hill, Birmingham, where Pickard applied his recently patented crank to it. It was this Wasborough-Pickard engine which posed a threat to Boulton \& Watt trying to develop a rotative engine, for Wasborough built several engines for cornmills in Bristol, woollen mills in Gloucestershire and a block factory at Southampton before his early death. Matthew Boulton was told that Wasborough was "so intent upon the study of engines as to bring a fever on his brain and he dyed in consequence thereof…. How dangerous it is for a man to wade out of his depth" (Jenkins 1936:106).
    [br]
    Bibliography
    1779, British patent no. 1,213 (rotative engine with flywheel).
    Further Reading
    J.Tann, 1978–9, "Makers of improved Newcomen engines in the late 18th century, and R.A.Buchanan", 1978–9, "Steam and the engineering community in the eighteenth century", Transactions of the Newcomen Society 50 ("Thomas Newcomen. A commemorative symposium") (both papers discuss Wasborough's engines).
    R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (examines his patent).
    R.Jenkins (ed.), 1936, Collected Papers, 106 (for Matthew Boulton's letter of 30 October 1781).
    RLH

    Biographical history of technology > Wasborough, Matthew

  • 8 Torricelli, Evangelista

    [br]
    b. 15 October 1608 Faenza, Italy
    d. 25 October 1647 Florence, Italy
    [br]
    Italian physicist, inventor of the mercury barometer and discoverer of atmospheric pressure.
    [br]
    Torricelli was the eldest child of a textile artisan. Between 1625 and 1626 he attended the Jesuit school at Faenza, where he showed such outstanding aptitude in mathematics and philosophy that his uncle was persuaded to send him to Rome to a school run by Benedetto Castelli, a mathematician and engineer and a former pupil of Galileo Galilei. Between 1630 and 1641, Torricelli was possibly Secretary to Giovanni Ciampoli, Galileo's friend and protector. In 1641 Torricelli wrote a treatise, De motugravium, amplifying Galileo's doctrine on the motion of projectiles, and Galileo accepted him as a pupil. On Galileo's death in 1642, he was appointed as mathematician and philosopher to the court of Grand Duke Ferdinando II of Tuscany. He remained in Florence until his early death in 1647, possibly from typhoid fever. He wrote a great number of mathematical papers on conic sections, the cycloid, the logarithmic curve and other subjects, which made him well known.
    By 1642 Torricelli was producing good lenses for telescopes; he subsequently improved them, and attained near optical perfection. He also constructed a simple microscope with a small glass sphere as a lens. Galileo had looked at problems of raising water with suction pumps, and also with a siphon in 1630. Torricelli brought up the subject again in 1640 and later produced his most important invention, the barometer. He used mercury to fill a glass tube that was sealed at one end and inverted it. He found that the height of mercury in the tube adjusted itself to a well-defined level of about 76 cm (30 in.), higher than the free surface outside. He realized that this must be due to the pressure of the air on the outside surface and predicted that it would fall with increasing altitude. He thus demonstrated the pressure of the atmosphere and the existence of a vacuum on top of the mercury, publishing his findings in 1644. He later noticed that changes in the height of the mercury were related to changes in the weather.
    [br]
    Bibliography
    1641, De motu gravium.
    Further Reading
    T.I.Williams (ed.), 1969, A Biographical Dictionary of Scientists, London: A. \& C.Black.
    Chambers Concise Dictionary of Scientists, 1989, Cambridge.
    A Dictionary of Scientific Biography, 1976, Vol. XIII, New York: C.Scribner's Sons.
    A.Stowers, 1961–2, "Thomas Newcomen's first steam engine 250 years ago and the initial development of steam power", Transactions of the Newcomen Society 34 (provides an account of his mercury barometer).
    W.E.Knowles Middleton, 1964, The History of the Barometer, Baltimore.
    RLH

    Biographical history of technology > Torricelli, Evangelista

  • 9 Macintosh, Charles

    [br]
    b. 29 December 1766 Glasgow, Scotland
    d. 25 July 1843 Dunchattan, near Glasgow, Scotland
    [br]
    Scottish inventor of rubberized waterproof clothing.
    [br]
    As the son of the well-known and inventive dyer George Macintosh, Charles had an early interest in chemistry. At the age of 19 he gave up his work as a clerk with a Glasgow merchant to manufacture sal ammoniac (ammonium chloride) and developed new processes in dyeing. In 1797 he started the first Scottish alum works, finding the alum in waste shale from coal mines. His first works was at Hurlet, Renfrewshire, and was followed later by others. He then formed a partnership with Charles Tennant, the proprietor of a chemical works at St Rollox, near Glasgow, and sold "lime bleaching liquor" made with chlorine and milk of lime from their bleach works at Darnley. A year later the use of dry lime to make bleaching powder, a process worked out by Macintosh, was patented. Macintosh remained associated with Tennant's St Rollox chemical works until 1814. During this time, in 1809, he had set up a yeast factory, but it failed because of opposition from the London brewers.
    There was a steady demand for the ammonia that gas works produced, but the tar was often looked upon as an inconvenient waste product. Macintosh bought all the ammonia and tar that the Glasgow works produced, using the ammonia in his establishment to produce cudbear, a dyestuff extracted from various lichens. Cudbear could be used with appropriate mordants to make shades from pink to blue. The tar could be distilled to produce naphtha, which was used as a flare. Macintosh also became interested in ironmaking. In 1825 he took out a patent for converting malleable iron into steel by taking it to white heat in a current of gas with a carbon content, such as coal gas. However, the process was not commercially successful because of the difficulty keeping the furnace gas-tight. In 1828 he assisted J.B. Neilson in bringing hot blast into use in blast furnaces; Neilson assigned Macintosh a share in the patent, which was of dubious benefit as it involved him in the tortuous litigation that surrounded the patent until 1843.
    In June 1823, as a result of experiments into the possible uses of naphtha obtained as a by-product of the distillation of coal tar, Macintosh patented his process for waterproofing fabric. This comprised dissolving rubber in naphtha and applying the solution to two pieces of cloth which were afterwards pressed together to form an impermeable compound fabric. After an experimental period in Glasgow, Macintosh commenced manufacture in Manchester, where he formed a partnership with H.H.Birley, B.Kirk and R.W.Barton. Birley was a cotton spinner and weaver and was looking for ways to extend the output of his cloth. He was amongst the first to light his mills with gas, so he shared a common interest with Macintosh.
    New buildings were erected for the production of waterproof cloth in 1824–5, but there were considerable teething troubles with the process, particularly in the spreading of the rubber solution onto the cloth. Peter Ewart helped to install the machinery, including a steam engine supplied by Boulton \& Watt, and the naphtha was supplied from Macintosh's works in Glasgow. It seems that the process was still giving difficulties when Thomas Hancock, the foremost rubber technologist of that time, became involved in 1830 and was made a partner in 1834. By 1836 the waterproof coat was being called a "mackintosh" [sic] and was gaining such popularity that the Manchester business was expanded with additional premises. Macintosh's business was gradually enlarged to include many other kinds of indiarubber products, such as rubber shoes and cushions.
    [br]
    Principal Honours and Distinctions
    FRS 1823.
    Further Reading
    G.Macintosh, 1847, Memoir of Charles Macintosh, London (the fullest account of Charles Macintosh's life).
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87 (an account of the invention of the mackintosh).
    RLH / LRD

    Biographical history of technology > Macintosh, Charles

См. также в других словарях:

  • Newcomen steam engine — Animation of a schematic Newcomen steam engine. – Steam is shown pink and water is blue. – Valves move from open (green) to closed (red) The atmospheric engine invented by Thomas Newcomen in 1712, today referred to as a Newcomen steam engine (or… …   Wikipedia

  • History of the steam engine — This article primarily deals with the history of the reciprocating type steam engine. The parallel development of turbine type engines is described in the steam turbine article. The history of the steam engine stretches back as far as the first… …   Wikipedia

  • Thomas Newcomen — (* 26. Februar 1663 in Dartmouth; † 5. August 1729 in London) war ein englischer Erfinder. Inhaltsverzeichnis 1 Leben 2 Literatur 3 Einzelnachweise …   Deutsch Wikipedia

  • Thomas Newcomen — Animation of a schematic Newcomen steam engine. – Steam is shown pink and water is blue. – Valves move from open (green) to closed (red) Thomas Newcomen (shortly before 24 February 1664 –[1] 5 August 1729) was an ironmonger by trade and a Baptist …   Wikipedia

  • steam engine — steam engine, adj. an engine worked by steam, typically one in which a sliding piston in a cylinder is moved by the expansive action of the steam generated in a boiler. [1745 55] * * * Machine that uses steam power to perform mechanical work… …   Universalium

  • Steam engine — A steam engine is a heat engine that performs mechanical work using steam as its working fluid. [ [http://www.britannica.com/EBchecked/topic/564472/steam engine steam engine Britannica Online Encyclopedia ] ] Steam engines have a long history,… …   Wikipedia

  • Thomas Savery — Infobox Engineer |165px image size = caption = name = Thomas Savery nationality = English birth date = c. 1650 birth place = Modbury, Devon, England death date = 1715 death place = education = spouse = parents = children = discipline =… …   Wikipedia

  • Watt steam engine — The Watt steam engine was the first type of steam engine to make use of steam at a pressure just above atmospheric to drive the piston helped by a partial vacuum. Improving on the design of the 1712 Newcomen engine, the Watt steam engine,… …   Wikipedia

  • Newcomen — Thomas Newcomen (* 26. Februar 1663 in Dartmouth; † 5. August 1729 in London) war ein englischer Erfinder. Prinzipzeichnung der Newcomenschen Dampfmaschine Newcomen war Eisenwarenhändler und hatte einige große Bergwerksgesellschaften als Kunden.… …   Deutsch Wikipedia

  • Marine steam engine — Period cut away diagram of a triple expansion steam engine installation, circa 1918 A marine steam engine is a reciprocating steam engine that is used to power a ship or boat. Steam turbines and diesel engines largely replaced reciprocating steam …   Wikipedia

  • Newcomen — may refer to: Viscount Newcomen, an extinct viscountcy People with the surname Newcomen: John Newcomen (circa 1613 1630), first white settler murdered by another white settler in Plymouth Colony, Massachusetts Matthew Newcomen (circa 1610 1669),… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»